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Abstract
Dynamic graphs represent connections in complex systems changing over time, posing unique challenges for anomaly detec-
tion. Traditional static graph models and shallow dynamic graph methods often fail to capture the temporal dynamics and 
interactions effectively, limiting their ability to detect anomalies accurately. In this work, we introduce the Attribute Encoding 
Transformer (AET), a novel framework specifically designed for anomaly detection in unattributed dynamic graphs. The 
AET integrates advanced encoding strategies that leverage both spatial and historical interaction data, enhancing the model’s 
ability to identify anomalous patterns. Our approach includes a Link Prediction Pre-training methodology that optimizes the 
transformer architecture for dynamic contexts by pre-training on link prediction tasks, followed by fine-tuning for anomaly 
detection. Comprehensive experiments on four real-world datasets demonstrate that our framework outperforms the state-
of-the-art methods in detecting anomalies, thereby addressing key challenges in dynamic graph analysis. This study not 
only advances the field of graph anomaly detection but also sets a new benchmark for future research on dynamic graph 
data analysis.
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1 Introduction

Recently, research on dynamic graph structure data has 
gained increasing attention. Unlike traditional static graphs, 
dynamic graphs, which represent data evolving over time, 
more accurately reflect the true dynamics and variability 
inherent in datasets. This characteristic is notably absent in 
static graph data. For instance, in real-world datasets such 
as social networks [8, 17], financial transaction networks 
[7], and citation graphs [11, 30, 31], nodes represent indi-
vidual users or entities, and edges represent interactions 
between them. The positions of nodes and edges, as well as 
their interactions, are in constant flux, making static graph 
analysis techniques inadequate for analyzing such data. For 

example, in real financial transaction networks like Bitcoin-
Alpha [12], it is crucial to detect anomalies as new edges 
form and old edges vanish continuously. Static graph mode-
ling only captures network information at a specific moment, 
failing to ascertain ongoing anomalous behaviors. Therefore, 
robust dynamic graph analysis techniques are essential for 
modeling dynamic graphs to capture temporal variations and 
unearth hidden structural information.

In the context of anomaly detection on dynamic graphs, 
shallow methods such as CM-Sketch [18] and Goulier 
[1], which rely on model structural analysis and historical 
behavior analysis, have demonstrated limited efficacy in han-
dling large graph datasets. Recently, deep learning-based 
approaches have shown remarkable success in dynamic 
graph learning due to their efficiency in processing large 
datasets. For instance, NetWalk [28] employs deep graph 
embedding techniques coupled with cluster-based anomaly 
detection; AddGraph [33] and StrGNN [3] utilize end-to-end 
deep neural network models to address anomaly detection; 
EvolveGCN [4] segments the dynamic graph into discrete 
time-step snapshots, integrating Recurrent Neural Net-
works (RNNs) and various Graph Neural Network (GNN) 
modules to capture both temporal information and spatial 
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topological details of graphs. Although these advancements 
have improved the performance of dynamic graph modeling, 
several key limitations still persist.

Although some progress has been made in dynamic 
graph anomaly detection [24], existing methods still face 
multiple challenges. Firstly, effectively capturing the dyna-
mism of graphs and the complex dependencies over time is 
a critical issue [20, 29]. Many current dynamic graph learn-
ing methods rely on simplified temporal models, such as 
decomposing the graph into a series of snapshots at discrete 
time points [21], which may overlook critical information 
within the temporal gaps. Additionally, most methods fail 
to effectively integrate spatial and temporal information 
of graphs, leading to inaccurate or inefficient detection of 
anomalous patterns in dynamic graphs. For instance, some 
methods based on Graph Convolutional Networks (GCNs) 
[33] can handle the spatial structure of graphs but are limited 
in capturing the evolution of graphs over time. Furthermore, 
the data volume to be processed is often enormous, posing 
higher demands on the computational efficiency and scal-
ability of algorithms. Overall, the challenges associated with 
anomaly detection in unattributed dynamic graphs can be 
summarized as follows:

• Encoding nodes and edges in unattributed graphs is dif-
ficult, and currently, there is no established paradigm for 
encoding nodes or edges in such graphs. Each node or 
edge lacks initial features, and due to changes over time 
or privacy issues that prevent access, it is challenging 
to directly construct node attribute information from 
dynamic graph data.

• Previous methods have not sufficiently encoded spatial 
and historical interaction information [25]. Particularly 
with historical interactions, earlier methods did not 
account for the dynamic nature of dynamic graphs. In 
dynamic graphs, the same edge often appears multiple 
times at different timestamps, and existing methods typi-
cally use static graph encoding strategies that eliminate 
duplicate edges, which is not reasonable. The repetition 
of an edge at multiple different timestamps often implies 
that the edge is more significant. The time modeling in 
dynamic graphs is either short-term or coarse-grained. 
On one hand, the method of dividing dynamic graphs 
into discrete snapshots discards fine-grained temporal 
information, making it difficult to capture short-term 
interactions within the graph. On the other hand, using 
static graph modeling methods on individual discrete 
snapshots makes capturing long-term dependencies in 
historical graph data challenging.

• Previous attempts to apply the transformer architecture to 
anomaly detection in unattributed graphs have not fully 
leveraged the performance capabilities of the transformer 
structure. Although TADDY utilized a transformer to 

capture the spatial-temporal features coupled with graph 
structure, it lacked an effective training strategy. Due to 
its large number of parameters [22], the transformer 
structure often requires appropriate pre-training tasks 
and fine-tuning on the target task to perform optimally. 
Most previous works were trained directly on anomaly 
detection tasks, resulting in suboptimal outcomes.

To address the aforementioned challenges, the main contri-
butions of this paper are as follows:

• We propose a novel encoding paradigm for edges in unat-
tributed graphs. This encoding process considers both 
global and local spatial information of the target edge, 
as well as the edge’s historical interaction information 
including the relative temporal sequence and frequency 
of repetitions. This approach ensures that the generated 
encodings contain richer information, which better sup-
ports downstream tasks.

• We introduce a link prediction pre-training methodology, 
which is both simple and efficient. This method enables 
the transformer architecture to fully leverage its capabili-
ties when applied to anomaly detection in unattributed 
dynamic graphs. The model, after pre-training and fine-
tuning, produces high-quality embeddings that enhance 
support for anomaly detection tasks.

• Extensive experiments have been conducted using our 
Attribute Encoding Transformer (AET) on existing 
public unattributed dynamic graphs datasets. The per-
formance of our method surpasses that of other exist-
ing approaches, demonstrating the effectiveness of our 
encoding paradigm and pre-training and fine-tuning strat-
egy.

2  Related work

2.1  Encoding for nodes or edges

In anomaly detection methodologies, particularly within 
graphs with node attributes like text graphs, encoding pro-
cesses typically involve encoding the textual attributes of 
nodes [2, 14]. For instance, in Graphformers [26] the tex-
tual features of nodes are independently encoded by lan-
guage models. However, these approaches face a significant 
challenge: they are unable to generate new node attributes 
when original node attributes are absent. In real-world sce-
narios, due to concerns about privacy and security, nodes 
and edges often lack attribute information, and commonly 
used dynamic graph datasets also do not include attributes 
for nodes or edges. Therefore, methods that explicitly encode 
node or edge attributes cannot be directly applied to unat-
tributed dynamic graphs [27]. Nevertheless, we can center 
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on these nodes or edges, sampling the surrounding nodes 
or edges, and using these surroundings as attributes of the 
center. For example, by focusing on an edge, we can sample 
neighboring nodes and use the structural properties of these 
neighbors as attributes of the central node as Taddy [13]. 
Since dynamic graphs contain temporal information, often 
represented as timestamps in datasets, for nodes without 
attributes, the dynamic graph can include historical interac-
tion data between two nodes, such as the number of interac-
tions and the timing of these interactions, which can also 
serve as attributes for encoding the nodes.

2.2  Transformers in graph

Transformer [22], a potent neural network architecture based 
on self-attention mechanisms, was first introduced for tasks 
in natural language processing. Subsequently, Bert [6] built 
upon the transformer by incorporating pre-training tech-
niques, thereby broadening its applications and extending 
its application to areas such as multimodality [10]. Due to 
issues such as over-smoothing and over-squashing encoun-
tered in Graph Neural Networks (GNNs), some researchers 
have adapted the transformer for graph data learning, effec-
tively mitigating these problems. For instance, Graphformer 
[27] diversifies node encoding by integrating node-specific 
feature sets into the transformer architecture, while [15] 
employs a graph masking attention mechanism that incorpo-
rates graph-related prior knowledge before the transformer. 
GraphBERT [32] constructs a Bert-like network model and 
uses a pre-trained self-supervised model aimed at embed-
ding learning in static graphs. Recently, As the state-of-the-
art model, Teddy [13] has introduced the transformer struc-
ture into anomaly detection tasks specifically designed for 
dynamic graphs. In contrast, our work focuses more on the 
historical interaction information within dynamic graphs and 
employs a novel pre-training method to optimize transformer 
performance in dynamic graph anomaly detection tasks.

3  Question definition

In this section, we define the dynamic graph and the problem 
of dynamic graph anomaly detection. 1 Let T be the maxi-
mum timestamp. A graph steam is represented by 
� = {G}

T
t=1

 , where each Gt =
(

V
t, Et

)

 represents the snapshot 
at timestamp t , and Vt and Et are the set of nodes and edges 
respectively. An edge et

i,j
=

(

vt
i
, vt

j

)

∈ E
t , means that the i-th 

node and the j-th node have a connection in the graph at the 
timestamp t , where vt

i
, vt

j
∈ V

t . We use nt = |

|
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t
|

|

 and mt = |

|
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t
|

|

 
to denote the number of nodes and edges at timestamp t 
respectively. A adjacency matrix At ∈ ℝ

nt×nt is used to 

represented Gt , if there is a link between two nodes, At

i,j
= 1 , 

otherwise, At

i,j
= 0.

The goal of this work is to detect the anomalous edges in 
each timestamp. Concretely, for each et

i,j
∈ E

t , the model 

produces f
(

et
i,j

)

 , the anomalous probability of et
i,j

 , where et
i,j

 
is a learnable anomaly score function. In the training phase, 
we do not use the labelled anomalous data, but in the testing 
phase we leverge the abnormal binary labels. Specifically, if 
the edge et

i,j
 is an anomalous edges, the label yet

i,j
= 1 , other-

wise, the label yet
i,j
= 0.

All important notations in this paper are summarized in 
Table 1.

4  Method

Given a dynamic graph � = {G}
T
t=1

 , our goal is to identify 
a fake interaction edge �t ∉ E

t , which should not exist in 
the graph. To achieve this, we have developed the Attrib-
ute Encoding Transformer (AET) on Unattributed Dynamic 
Graphs for Anomaly Detection. Specifically, our AET 
model consists of four main components: the Negative 

Table 1  Glossary of notations

Notation Definition

� = {G}
T
t=1

A graph steam with a maximum timestamp of T

G
t =

(

V
t
, E

t
)

The snapshot graph at timestamp t
V
t The node set at timestamp t

E
t The edge set at timestamp t

et
i,j
=

(

vt
i
, vt

j

)

∈ E
t An edge between vt

i
 and vt

j
 at the timestamp t

�
t ∉ E

t An edge not in Et

nt The number of nodes at timestamp t
mt The number of edges at timestamp t
At The binary adjacency matrix at timestamp t
f (⋅) Anomaly score function
S(et

i,j
) The substructure node set of target edge et

i,j

Xglb(V) The global spatial encoding of the node set
Xloc(V) The local spatial encoding of the node set
Xtemp(V) The relative temporal encoding of the node set
X(et

i,j
) The encoding matrix of target edge et

i,j

Q(l) The query matrix of the l-th layers of transformer

K(l) The key matrix of the l-th layers of transformer

V(l) The value matrix of the l-th layers of transformer

H(l) The output embedding of the l-th layers of 
transformer

k The number of contextual nodes
� The size of time window
L The number of layers of transformer
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Sample Generator, Substructure Sampling, Spatial Histori-
cal Encoder, and the transformer Module. To maximize the 
potential of the transformer module, our model employs a 
training strategy that begins with pre-training followed by 
fine-tuning on the target task, which we refer to as link pre-
diction pre-training. In Sect. 4.1, we introduce the relevant 
preliminary knowledge. Subsequently, in Sect. 4.2, we pre-
sent the overall pipeline of our model. Sections 4.3 and 4.4 
detail some key structures within our model. In Sect. 4.5, we 
provide a comprehensive description of our link prediction 
pre-training process, including the specific loss functions 
and other details.

4.1  Our attribute encoding transformer (AET)

The overview of our proposed framework is depicted in Fig. 1. 
Here, we sequentially describe the functionalities of the four 
components mentioned above. Since unattributed dynamic 
graphs typically contain only positive samples, the negative 
sample generator is essential both during pre-training and fine-
tuning to artificially construct negative samples needed for 
training. We unify edge anomalies in dynamic graphs with 
Link Prediction, where Link Prediction serves as a pre-training 
task and anomaly detection as a fine-tuning task. At timestamp 
t , we randomly sample a set number of nodes as candidates for 
anomalous samples. We then verify that these node pairs do 
not belong to the existing set of normal edges across all train-
ing timestamps, as done in previous methods like TADDY. 
Once positive and negative samples are obtained, the sub-
structure sampling module operates by centering on an edge 
to sample a substructure, which serves as a surrogate for edge 
attributes. This substructure, along with historical interaction 
data extracted from the original graph, is then processed using 
the spatial historical encoder to generate an edge encoding 
that can represent edge attributes. Subsequently, these edge 

encodings are treated as individual tokens input into the trans-
former Module, where they interact with one another through 
the module’s multi-head attention mechanism, enhancing the 
encoding of the dynamic attributes of the graph. Finally, the 
output edge encoding is utilized for the link prediction task 
during pre-training or the Anomaly Detection task during 
fine-tuning.

4.2  Substructure sampling

Before conducting substructure sampling on the samples, it is 
essential to have both positive and negative samples, neces-
sitating the use of a negative sample generator to produce the 
negative samples.

For the link prediction pre-training task, we need to deter-
mine whether two nodes are connected; hence, an edge formed 
by connecting two randomly unconnected nodes serves as a 
negative sample for link prediction. However, during the fine-
tuning phase for the Anomaly Detection task, the challenge 
arises because our training dataset lacks real negative samples. 
How can we generate pseudo-negative samples from positive 
samples? Inspired by Taddy [13], we use edges that do not 
exist in the original dynamic graph as negative samples. Spe-
cifically, just like in the negative sample generator for link 
prediction pre-training, we select two random nodes and verify 
that these nodes are not connected at any timestamp. An edge 
connecting these two random nodes, therefore, represents an 
edge that does not exist in the original dynamic graph, thus 
providing a negative sample.

Formally, we define graph diffusion S ∈ ℝ
n×n by

(1)S =

∞
∑

k=0

ΘkT
k ∈ ℝ

n×n
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Fig. 1  Pipeline of attribute encoding transformer on unattributed dynamic graphs for anomaly detection
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where T ∈ ℝ
n×n is the generalized transition matrix and Θ 

is the weighting coefficient which determines the ratio of 
global–local information. The adjacency matrix A ∈ ℝ

n×n 
and the diagonal degree matrix D ∈ ℝ

n×n are used by 
generalized graph diffusion to define the Personalized 
PageRank(PPR) instantiations. PPR chooses T = AD−1 and 
�k = �(1 − �)k where � ∈ (0, 1) is the teleport probability. 
The solutions to PPR is formulated as:

From a global perspective, a row si of the diffusion matrix 
S represents the connectivity between the i-th node and the 
other nodes. After that, to gain the representation of the tar-
get edge ei,j = (v1, v2) , we can choose a fix number of most 
important nodes, and compute the connectivity of ei,j by add-
ing the connectivity vectors.

We then turn our attention to dynamic graphs, initially cap-
turing their temporal evolution through multiple timestamps. 
For a given target edge et

i,j
= (vt

1
, vt

2
) at timestamp t  , the 

sequence of graphs is defined as �t
�
=
{

G
t−�+1, ⋅ ⋅ ⋅,Gt

}

 , 
where � represents the size of the time window. A sliding 
window mechanism is subsequently employed, enabling the 
capture of dynamic evolving between timestamps (t − � + 1) 
and t . For each substructure within the time frame, we com-
pute the diffusion matrix and obtain a representation vector 
for the target edge. By sorting the elements within this con-
nection vector, we can select k nodes. Integrating the source 

(2)SPPR = �
(

�
�
− (1 − �)D−1∕2

��
−�∕�

)−1

(3)sei,j = sv1 + sv2

and destination nodes, the substructure node set of the i-th 
timestamp can be sampled as Si(et

i,j
).

4.3  Spatial historical encoder

Our spatial historical encoder architecture is illustrated in 
Fig. 2a. It consists of four key components: the global spatial 
encoder, local spatial encoder, relative temporal encoder, 
and appear frequency encoder. These elements are designed 
to synergistically process and integrate different types of 
spatial and temporal data, thereby enhancing the overall 
encoding performance for our tasks. To capture the spatial 
information of the target edge, including the neighboring 
conditions and the degree of connectivity, we employ a spa-
tial encoder to encode the obtained substructure, thereby 
extracting the spatial attributes of the target edge. To acquire 
the historical interaction information of the target edge, 
which includes the sequence of timestamps when the tar-
get edge appears and the frequency of its occurrence, we 
utilize a historical encoder. This encoder processes both 
the ubstructure and the occurrence data gathered from the 
original dataset to encode the historical interaction attrib-
utes of the target edge. Finally, we integrate the spatial and 
historical interaction attributes of the target edge to form an 
intermediate encoding for the target edge.

Specifically, for the substructure obtained from substructure 
sampling, the target edge’s substructure at timestamp t  is 
S(et

i,j
) . In the spatial encoder, it is essential to capture both 

global and local spatial information. Inspired by Graphformers 
[26], the graph diffusion in substructure sampling provides a 

Fig. 2  Key structures within our AET
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global view of each node’s structural role. We rank nodes 
based on their diffusion values and use these rankings as a data 
source, embedding the target edge’s spatial information within 
these rankings. The formula for this process is:

where V  is the node set based on the diffusion values, 
g(⋅),R(⋅) are the linear mapping function and ranking 
function.

Additionally, for the target edge, it is crucial to capture local 
spatial information. We calculate the shortest distance from the 
nodes in the substructure to the target edge for its encoding. 
If a node in the substructure is a source or target node of the 
target edge, the distance is set to zero. A single-layer learn-
able linear function is also employed to ensure dimensional 
alignment with the component that captures global spatial 
information:

where dist(⋅),min(⋅) are the relative distance computing 
function and minimum value function.

Then, by integrating both global and local spatial informa-
tion, we derive the spatial attributes of the target edge. In the 
sistorical encoder, it is crucial to capture the relative order 
of timestamps for the target edge. However, merely encoding 
the relative sequence of timestamps is insufficient for captur-
ing the edge’s historical interactions effectively. Many edges 
reappear at different timestamps, and the practice of removing 
duplicate edges during the preprocessing stage significantly 
reduces the richness of information. At this stage, we can tally 
the frequency of occurrences of the target edge and encode 
this information simultaneously to prevent loss of data due to 
the removal of duplicates. For the relative order of the target 
edge’s timestamps, we encode using the current timestamp 
in relation to the timestamps of the target edge. The result-
ing data is then dimensionally aligned using a single-layer 
learnable linear function. The frequency of occurrences of 
the target edge also requires dimensional alignment through a 
single-layer learnable linear function, which, when combined 
with the previous outputs, yields the target edge’s historical 
interaction attributes, denoted as �(V) . After that, we merge 
the target edge’s spatial attributes and historical interaction 
attributes to form an intermediate encoding for the target edge, 
represented as:

where ‖⋅‖ is the relative time computing function.
Finally, given a target edge et

i,j
 , we compute the encoding 

of the substructure node set for the given edge by summing 
the three encoding terms together:

(4)Xglb(V) = g(R(V ⊂ S(et
i,j
)))

(5)Xloc(V) = g(
⋃t

i=t−�+1
min(dist(vi, v1), dist(vi, v2)))

(6)Xtemp(V) = g(�(V) +
t
⋃

i=t−�+1

(‖t − i‖))

4.4  Transformer module

Our tansformer module is illustrated in Fig. 2b. To further 
enhance the quality of encoding, inspired by Graphformer, 
different tokens within the transformer can interact and 
learn from each other, thereby enriching the content of the 
tokens. In our approach, we input the edge encodings into 
the transformer in chronological order based on their times-
tamps. At this stage, each edge encoding not only contains 
spatial information but also historical interaction data. The 
transformer architecture is thus able to capture both spa-
tial and temporal features simultaneously, facilitating the 
exchange of information between different edge encodings. 
Specifically:

where W(l)

Q
,K

(l)

K
,V

(l)

V
∈ ℝ

�(k+2)×d , are learnable parameter 
matrices of the l-th attention layer. Then a single attention 
layer can be written as:

where H(l) is the output embedding of the l-th layer, d is the 
dimension for node embedding, and Q(l),K(l),V(l) ∈ ℝ

�(k+2)×d 
are the query matrix, key matrix and value matrix. The out-
put of the attention layer H(l) is represented as the node 
embedding matrix from the transformer module, where each 
row corresponds to the embedding vector of a respective 
node, H(0) is defined as the encoding matrix of the target 
edge X(et

i,j
) , which is the output of spatial historical encoder.

4.5  Link prediction pre‑training

As previously mentioned, due to the large number of param-
eters in the transformer, an appropriate pre-training strategy 
is essential to fully harness its capabilities. The link predic-
tion pre-training task, which assesses whether two nodes 
are connected, is a common measure of the performance of 
GNNs. Given a pair of nodes, q and k, the model is trained 
to predict their connectivity based on the embedding of the 
edge. When fine-tuning on the target dataset, we use all 
other datasets as the training data for the link prediction 
pre-training. Samples generated by the negative sample gen-
erator serve as negative samples eneg , while edges that are 
connected in the original graph are used as positive samples 
epos . The loss function used in this context is denoted as:

(7)X(et
i,j
) = Xglb(V) + Xloc(V) + Xtemp(V)

(8)Q(l) = H(l−1)W
(l)

Q
,K(l) = H(l−1)W

(l)

K
,V(l) = H(l−1)W

(l)

V

(9)H(l) = softmax

�

Q(l)K(l)⊤

√

d

�

V(l) = attention(Hl−1)
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After completing the link prediction pre-training, we save 
its weights and use these to initialize our Attribute Encod-
ing Transformer (AET). We then reduce the learning rate 
to proceed with the anomaly detection tasks. This method 
not only leverages the powerful learning capabilities of the 
Transformer but also ensures that our model is finely tuned 
for the specific nuances of anomaly detection in dynamic 
graphs.

5  Experimental studies

This section provides a comprehensive overview of vari-
ous experiments conducted on multiple real-world bench-
mark datasets.

5.1  Datasets

We evaluate our work on four real-world benchmark data-
sets of dynamics graphs. The details of the datasets are 
shown in Table 2. The UCI Messages dataset [16] is col-
lected from an online community platform of students at 
the University of California, Irvine. Each node represents 
a user in the platform, and each edge is for a message 
between two users. The  Email-DNC dataset [19] is net-
work of emails in the 2016 Democratic National Com-
mittee email leak. Each node corresponds to a person. 
And each edge denotes an email communication between 
two persons. The Digg dataset [5] is a response notwork 
of digg, a social news site. Each node represents a web-
site user, and each edge indicates that one user replies to 
another. The Bitcoin-Alpha [12] is a network connection 
dataset collected from a Bitcoin transaction platform www.
btc-alpha.com. Nodes are users from the platform, and 
there is an edge appear when one user rates another user.

(10)L = −

mt

∑

i=1

log(1 − f (epos,i) + log(f (eneg,i))
5.2  Baselines

We compare our work with seven state-of-the-art baselines, 
the details of which were compared as follows:

Node2vec [9] use the Skip-gram technology to learn node 
embedding. It combines breadth-first traversal and depth-
first traversal when generating random walks.

Spectral Clustering [23] treats all data nodes as vertices 
in a space, forming a graph wherein the objective is to parti-
tion this graph. The process involves optimizing the cut of 
the graph such that the sum of the edge weights between 
different subgraphs is minimized, while the sum of the edge 
weights within each subgraph is maximized. This method 
aims to achieve effective clustering by ensuring that the sub-
graphs are internally cohesive yet distinctly separated from 
each other.

DeepWalk [17] is a random walk-based method for graph 
embedding. It generates the random walks when given 
length starting from nodes and uses Skip-gram to learn the 
node embeddings.

NetWalk [28] first builds node embeddings based on 
random walks. Specifically, it utilizes a random alk-based 
approach to learn a unified embedding for each node using 
auto-encoder technology. The embedding representation will 
be update over time via an attention-based GRU structure, 
and then detects anomaly using the clustering on the node 
embeddings.

AddGraph [33] is an end-to-end dynamic graph anomaly 
detection model. It leverages GCN and GRU-attention to 
capturte strucral and temporal information respectively.

StrGNN [3] is an end-to-end dynamic graph anomaly 
detection approach. It leverges h-hop enclosing subgraphs 
as the network’s input, and then used GCN and GRU to 
model the structural and temporal information for each edge.

TADDY [13] constructs an informative node encoding 
method, and uses a transformer model to successfully cap-
tures the coupled spatial-temporal information in dynamic 
graphs.

5.3  Experimental design

Evaluation Protocol AUC (Area Under Curve) is a metric for 
evaluating the performance of binary classification models. 
It takes account of the evaluation ability of both positive 
and negative classes, and is widely used in anomaly detec-
tion models.

Our proposed method is implemented using PyTorch 
1.13.0 and CUDA 12.0. All experiments are conducted on 
a Linux server with 8*NVIDIA A40(40GB memory each) 
GPUs, with Intel Xeon Gold 6248R @ 3.00GHz * 2 and 1 
T of RAM. The number of transformer layers is 2 with the 
embedding dim of 448 for all the datasets, and the number of 
attention heads is 6. Setting of Link Prediction Pre-training 

Table 2  The information of datasets

Dataset Nodes Edges Avg. degree

UCI 1899 13,838 14.57
Email-DNC 1866 39,264 42.08
Digg 30,360 85,155 5.61
Bitcoin-Alpha 3777 24,173 12.80
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The framework is pre-trained by Adam optimizer with a 
learning rate of 0.0005 with weight decay of 5e−5. In Pre-
training stage, we train all datasets with 400 epochs for Link 
Prediction task then save the model’s weight for initializa-
tion in anomaly detection task. Setting of Anomaly Detection 
fine-tuning The framework is trained by Adam optimizer 
with a learning rate of 0.0001 with weight decay of 2e−5. 
We train all datasets with 80 epochs. As baseline used, each 
dataset is divided into two subsets: the first 50% of times-
tamps is denoted as training set, while the latter 50% as test 
set. we consider three different anomaly proportions: 1%, 
5%, and 10%, when injecting the anomalous data into the 
test set in the preprocessing stage.

5.4  Results analysis

In this section, we first report and analyze the performance 
achieved on various attribute-less dynamic graph datasets, 
with all results summarized in Table 3.

• Our model consistently outperforms all baseline mod-
els across four different real-world datasets. Notably, on 
the UCI dataset, our model significantly surpasses other 
methods, achieving an average performance improve-
ment of approximately 3% across three different set-
tings. Particularly when the anomaly proportion is 1%, 
our model exhibits nearly a 6% increase in performance.

• Compared to other baselines, our model is less sensitive 
to variations in anomaly proportions. As indicated in the 
table, the performance of other models is greatly influ-
enced by the anomaly ratio, whereas our model maintains 
robust performance regardless of the anomaly propor-
tion. This robustness is likely due to our model’s superior 
capability in extracting high-quality edge embeddings, 
which significantly broadens its applicability.

• When compared with graph embedding methods such as 
NetWalk, AddGraph, and StrGNN, our results consist-
ently hold an advantage. We attribute this to our effec-
tive utilization of the transformer structure’s capability 
for long-distance modeling, allowing for the exchange 
of information across different timestamps. Moreover, 
compared to methods like Taddy that also use the trans-
former architecture, our approach remains superior. We 
speculate this is partly due to our effective exploitation 
of the transformer’s potential through an appropriate 
pre-training strategy and partly because our historical 
encoder adeptly captures temporal and historical inter-
action information. This enriches the node encoding, 
thereby enhancing anomaly detection performance.

Secondly, we evaluated the impact of varying training 
data proportions on the performance of AET. The training 
ratios tested ranged from 10% to 60% , with other parameters 
set to default values. We utilized the Bitcoin-Alpha dataset, 
which contains 10% anomalies, as depicted in Fig. 3. As 

Table 3  Performance comparison of various methods

Method UCI Digg

1% 5% 10% 1% 5% 10%

NODE2VEC 0.7371 0.7433 0.6960 0.7364 0.7081 0.6508
SPECTRAL 0.6324 0.6104 0.5794 0.5949 0.5823 0.5591
DEEPWALK 0.7514 0.7391 0.6979 0.7080 0.6881 0.6396
NETWALK 0.7758 0.7647 0.7226 0.7563 0.7176 0.6837
ADDGRAPH 0.8083 0.8090 0.7688 0.8341 0.8470 0.8369
STRGNN 0.8179 0.8252 0.7959 0.8162 0.8254 0.8272
TADDY 0.8912 0.8398 0.8370 0.8617 0.8545 0.8440
AET (ours) 0.8966 0.8679 0.8893  0.8755 0.8640 0.8725

Method Email-DNC Bitcoin-Alpha

1% 5% 10% 1% 5% 10%

NODE2VEC 0.7391 0.7284 0.7103 0.6910 0.6802 0.6785
SPECTRAL 0.8096 0.7857 0.7759 0.7401 0.7275 0.7167
DEEPWALK 0.7481 0.7303 0.7197 0.6985 0.6874 0.6793
NETWALK 0.8105 0.8371 0.8305 0.8385 0.8357 0.8350
ADDGRAPH 0.8393 0.8627 0.8773 0.8665 0.8403 0.8498
STRGNN 0.8775 0.9103 0.9080 0.8574 0.8667 0.8627
TADDY 0.9348 0.9257 0.9210 0.9451 0.9341 0.9423
AET (ours) 0.9537 0.9582 0.9498 0.9485 0.9472 0.9624
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the training ratio increases, the AUC value steadily rises, 
indicating that more training data can provide the model 
with more effective information. Even in cases of insuffi-
cient training data, our model is capable of learning infor-
mation-rich representations. These results demonstrate that 
our framework can effectively detect anomalies in dynamic 
graphs, regardless of the sufficiency of training data.

5.5  Ablation study

To analyze the impact of spatial historical encoder and link 
prediction pre-training methods on the overall performance, 
we carry out an ablation study of the proposed AET frame-
work. Specifically, we evaluate several variations of the node 
encoding: without the pre-training model (w/o pre-training.), 
and without the Spatial Historical Encoder (w/o Spatial His-
torical Encoder.). In each case, the corresponding compo-
nent is removed, while the remaining method is retained.

As illustrated in Fig. 4, the results clearly demonstrate 
that, on one hand, after pre-training, our model becomes 
less sensitive to variations in anomaly ratios. This improve-
ment is associated with the enriched graph structure expo-
sure during the pre-training phase, which broadens the initial 
knowledge base of the model. On the other hand, there is a 
significant difference in performance between models with 
and without the spatial historical encoder. This disparity can 
be attributed to the challenges of obtaining attributes for 
edges in attribute-less graphs. Without appropriate encod-
ing strategies and substructure sampling, models struggle 
to acquire useful attributes, hindering their ability to learn 
effective encodings.

6  Conclusion

In this paper, we introduce a novel encoding paradigm for 
edges in attribute-less graphs, termed the Attribute Encod-
ing Transformer, which comprehensively incorporates both 
spatial and historical interaction information of target edges. 
Additionally, we propose a pre-training methodology, link 
prediction pretrain, designed to optimize the performance of 
the transformer architecture. Experimental evaluations on 
multiple real-world datasets demonstrate that our Attribute 
Encoding Transformer framework efficiently detects anoma-
lies in dynamic graphs and outperforms existing methods. 
Overall, our AET successfully addresses the challenges of 
encoding attribute-less graphs, thereby enhancing support 
for downstream tasks such as anomaly detection.

Fig. 3  AUC results on Bitcoin-Alpha with different training ratios

Fig. 4  Ablation study
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