
Vol.:(0123456789)

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-024-02521-9

ORIGINAL ARTICLE

Attribute encoding transformer on unattributed dynamic graphs
for anomaly detection

Shang Wang1 · Haihong Hao1 · Yuan Gao1 · Xiang Wang1 · Xiangnan He1

Received: 29 June 2024 / Accepted: 24 December 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Dynamic graphs represent connections in complex systems changing over time, posing unique challenges for anomaly detec-
tion. Traditional static graph models and shallow dynamic graph methods often fail to capture the temporal dynamics and
interactions effectively, limiting their ability to detect anomalies accurately. In this work, we introduce the Attribute Encoding
Transformer (AET), a novel framework specifically designed for anomaly detection in unattributed dynamic graphs. The
AET integrates advanced encoding strategies that leverage both spatial and historical interaction data, enhancing the model’s
ability to identify anomalous patterns. Our approach includes a Link Prediction Pre-training methodology that optimizes the
transformer architecture for dynamic contexts by pre-training on link prediction tasks, followed by fine-tuning for anomaly
detection. Comprehensive experiments on four real-world datasets demonstrate that our framework outperforms the state-
of-the-art methods in detecting anomalies, thereby addressing key challenges in dynamic graph analysis. This study not
only advances the field of graph anomaly detection but also sets a new benchmark for future research on dynamic graph
data analysis.

Keywords Unattributed dynamic graphs · Anomaly detection · Attribute encoding · Transformer

1 Introduction

Recently, research on dynamic graph structure data has
gained increasing attention. Unlike traditional static graphs,
dynamic graphs, which represent data evolving over time,
more accurately reflect the true dynamics and variability
inherent in datasets. This characteristic is notably absent in
static graph data. For instance, in real-world datasets such
as social networks [8, 17], financial transaction networks
[7], and citation graphs [11, 30, 31], nodes represent indi-
vidual users or entities, and edges represent interactions
between them. The positions of nodes and edges, as well as
their interactions, are in constant flux, making static graph
analysis techniques inadequate for analyzing such data. For

example, in real financial transaction networks like Bitcoin-
Alpha [12], it is crucial to detect anomalies as new edges
form and old edges vanish continuously. Static graph mode-
ling only captures network information at a specific moment,
failing to ascertain ongoing anomalous behaviors. Therefore,
robust dynamic graph analysis techniques are essential for
modeling dynamic graphs to capture temporal variations and
unearth hidden structural information.

In the context of anomaly detection on dynamic graphs,
shallow methods such as CM-Sketch [18] and Goulier
[1], which rely on model structural analysis and historical
behavior analysis, have demonstrated limited efficacy in han-
dling large graph datasets. Recently, deep learning-based
approaches have shown remarkable success in dynamic
graph learning due to their efficiency in processing large
datasets. For instance, NetWalk [28] employs deep graph
embedding techniques coupled with cluster-based anomaly
detection; AddGraph [33] and StrGNN [3] utilize end-to-end
deep neural network models to address anomaly detection;
EvolveGCN [4] segments the dynamic graph into discrete
time-step snapshots, integrating Recurrent Neural Net-
works (RNNs) and various Graph Neural Network (GNN)
modules to capture both temporal information and spatial

 * Xiangnan He
 xiangnanhe@gmail.com

 Shang Wang
 cwws@ustc.mail.edu.cn

 Haihong Hao
 haohaihong@ustc.mail.edu.cn

1 University of Science and Technology of China, Hefei,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-024-02521-9&domain=pdf

 International Journal of Machine Learning and Cybernetics

topological details of graphs. Although these advancements
have improved the performance of dynamic graph modeling,
several key limitations still persist.

Although some progress has been made in dynamic
graph anomaly detection [24], existing methods still face
multiple challenges. Firstly, effectively capturing the dyna-
mism of graphs and the complex dependencies over time is
a critical issue [20, 29]. Many current dynamic graph learn-
ing methods rely on simplified temporal models, such as
decomposing the graph into a series of snapshots at discrete
time points [21], which may overlook critical information
within the temporal gaps. Additionally, most methods fail
to effectively integrate spatial and temporal information
of graphs, leading to inaccurate or inefficient detection of
anomalous patterns in dynamic graphs. For instance, some
methods based on Graph Convolutional Networks (GCNs)
[33] can handle the spatial structure of graphs but are limited
in capturing the evolution of graphs over time. Furthermore,
the data volume to be processed is often enormous, posing
higher demands on the computational efficiency and scal-
ability of algorithms. Overall, the challenges associated with
anomaly detection in unattributed dynamic graphs can be
summarized as follows:

• Encoding nodes and edges in unattributed graphs is dif-
ficult, and currently, there is no established paradigm for
encoding nodes or edges in such graphs. Each node or
edge lacks initial features, and due to changes over time
or privacy issues that prevent access, it is challenging
to directly construct node attribute information from
dynamic graph data.

• Previous methods have not sufficiently encoded spatial
and historical interaction information [25]. Particularly
with historical interactions, earlier methods did not
account for the dynamic nature of dynamic graphs. In
dynamic graphs, the same edge often appears multiple
times at different timestamps, and existing methods typi-
cally use static graph encoding strategies that eliminate
duplicate edges, which is not reasonable. The repetition
of an edge at multiple different timestamps often implies
that the edge is more significant. The time modeling in
dynamic graphs is either short-term or coarse-grained.
On one hand, the method of dividing dynamic graphs
into discrete snapshots discards fine-grained temporal
information, making it difficult to capture short-term
interactions within the graph. On the other hand, using
static graph modeling methods on individual discrete
snapshots makes capturing long-term dependencies in
historical graph data challenging.

• Previous attempts to apply the transformer architecture to
anomaly detection in unattributed graphs have not fully
leveraged the performance capabilities of the transformer
structure. Although TADDY utilized a transformer to

capture the spatial-temporal features coupled with graph
structure, it lacked an effective training strategy. Due to
its large number of parameters [22], the transformer
structure often requires appropriate pre-training tasks
and fine-tuning on the target task to perform optimally.
Most previous works were trained directly on anomaly
detection tasks, resulting in suboptimal outcomes.

To address the aforementioned challenges, the main contri-
butions of this paper are as follows:

• We propose a novel encoding paradigm for edges in unat-
tributed graphs. This encoding process considers both
global and local spatial information of the target edge,
as well as the edge’s historical interaction information
including the relative temporal sequence and frequency
of repetitions. This approach ensures that the generated
encodings contain richer information, which better sup-
ports downstream tasks.

• We introduce a link prediction pre-training methodology,
which is both simple and efficient. This method enables
the transformer architecture to fully leverage its capabili-
ties when applied to anomaly detection in unattributed
dynamic graphs. The model, after pre-training and fine-
tuning, produces high-quality embeddings that enhance
support for anomaly detection tasks.

• Extensive experiments have been conducted using our
Attribute Encoding Transformer (AET) on existing
public unattributed dynamic graphs datasets. The per-
formance of our method surpasses that of other exist-
ing approaches, demonstrating the effectiveness of our
encoding paradigm and pre-training and fine-tuning strat-
egy.

2 Related work

2.1 Encoding for nodes or edges

In anomaly detection methodologies, particularly within
graphs with node attributes like text graphs, encoding pro-
cesses typically involve encoding the textual attributes of
nodes [2, 14]. For instance, in Graphformers [26] the tex-
tual features of nodes are independently encoded by lan-
guage models. However, these approaches face a significant
challenge: they are unable to generate new node attributes
when original node attributes are absent. In real-world sce-
narios, due to concerns about privacy and security, nodes
and edges often lack attribute information, and commonly
used dynamic graph datasets also do not include attributes
for nodes or edges. Therefore, methods that explicitly encode
node or edge attributes cannot be directly applied to unat-
tributed dynamic graphs [27]. Nevertheless, we can center

International Journal of Machine Learning and Cybernetics

on these nodes or edges, sampling the surrounding nodes
or edges, and using these surroundings as attributes of the
center. For example, by focusing on an edge, we can sample
neighboring nodes and use the structural properties of these
neighbors as attributes of the central node as Taddy [13].
Since dynamic graphs contain temporal information, often
represented as timestamps in datasets, for nodes without
attributes, the dynamic graph can include historical interac-
tion data between two nodes, such as the number of interac-
tions and the timing of these interactions, which can also
serve as attributes for encoding the nodes.

2.2 Transformers in graph

Transformer [22], a potent neural network architecture based
on self-attention mechanisms, was first introduced for tasks
in natural language processing. Subsequently, Bert [6] built
upon the transformer by incorporating pre-training tech-
niques, thereby broadening its applications and extending
its application to areas such as multimodality [10]. Due to
issues such as over-smoothing and over-squashing encoun-
tered in Graph Neural Networks (GNNs), some researchers
have adapted the transformer for graph data learning, effec-
tively mitigating these problems. For instance, Graphformer
[27] diversifies node encoding by integrating node-specific
feature sets into the transformer architecture, while [15]
employs a graph masking attention mechanism that incorpo-
rates graph-related prior knowledge before the transformer.
GraphBERT [32] constructs a Bert-like network model and
uses a pre-trained self-supervised model aimed at embed-
ding learning in static graphs. Recently, As the state-of-the-
art model, Teddy [13] has introduced the transformer struc-
ture into anomaly detection tasks specifically designed for
dynamic graphs. In contrast, our work focuses more on the
historical interaction information within dynamic graphs and
employs a novel pre-training method to optimize transformer
performance in dynamic graph anomaly detection tasks.

3 Question definition

In this section, we define the dynamic graph and the problem
of dynamic graph anomaly detection. 1 Let T be the maxi-
mum timestamp. A graph steam is represented by
� = {G}

T
t=1

 , where each Gt =
(

V
t, Et

)

 represents the snapshot
at timestamp t , and Vt and Et are the set of nodes and edges
respectively. An edge et

i,j
=

(

vt
i
, vt

j

)

∈ E
t , means that the i-th

node and the j-th node have a connection in the graph at the
timestamp t , where vt

i
, vt

j
∈ V

t . We use nt = |

|

V
t
|

|

 and mt = |

|

E
t
|

|

to denote the number of nodes and edges at timestamp t
respectively. A adjacency matrix At ∈ ℝ

nt×nt is used to

represented Gt , if there is a link between two nodes, At

i,j
= 1 ,

otherwise, At

i,j
= 0.

The goal of this work is to detect the anomalous edges in
each timestamp. Concretely, for each et

i,j
∈ E

t , the model

produces f
(

et
i,j

)

 , the anomalous probability of et
i,j

 , where et
i,j

is a learnable anomaly score function. In the training phase,
we do not use the labelled anomalous data, but in the testing
phase we leverge the abnormal binary labels. Specifically, if
the edge et

i,j
 is an anomalous edges, the label yet

i,j
= 1 , other-

wise, the label yet
i,j
= 0.

All important notations in this paper are summarized in
Table 1.

4 Method

Given a dynamic graph � = {G}
T
t=1

 , our goal is to identify
a fake interaction edge �t ∉ E

t , which should not exist in
the graph. To achieve this, we have developed the Attrib-
ute Encoding Transformer (AET) on Unattributed Dynamic
Graphs for Anomaly Detection. Specifically, our AET
model consists of four main components: the Negative

Table 1 Glossary of notations

Notation Definition

� = {G}
T
t=1

A graph steam with a maximum timestamp of T

G
t =

(

V
t
, E

t
)

The snapshot graph at timestamp t
V
t The node set at timestamp t

E
t The edge set at timestamp t

et
i,j
=

(

vt
i
, vt

j

)

∈ E
t An edge between vt

i
 and vt

j
 at the timestamp t

�
t ∉ E

t An edge not in Et

nt The number of nodes at timestamp t
mt The number of edges at timestamp t
At The binary adjacency matrix at timestamp t
f (⋅) Anomaly score function
S(et

i,j
) The substructure node set of target edge et

i,j

Xglb(V) The global spatial encoding of the node set
Xloc(V) The local spatial encoding of the node set
Xtemp(V) The relative temporal encoding of the node set
X(et

i,j
) The encoding matrix of target edge et

i,j

Q(l) The query matrix of the l-th layers of transformer

K(l) The key matrix of the l-th layers of transformer

V(l) The value matrix of the l-th layers of transformer

H(l) The output embedding of the l-th layers of
transformer

k The number of contextual nodes
� The size of time window
L The number of layers of transformer

 International Journal of Machine Learning and Cybernetics

Sample Generator, Substructure Sampling, Spatial Histori-
cal Encoder, and the transformer Module. To maximize the
potential of the transformer module, our model employs a
training strategy that begins with pre-training followed by
fine-tuning on the target task, which we refer to as link pre-
diction pre-training. In Sect. 4.1, we introduce the relevant
preliminary knowledge. Subsequently, in Sect. 4.2, we pre-
sent the overall pipeline of our model. Sections 4.3 and 4.4
detail some key structures within our model. In Sect. 4.5, we
provide a comprehensive description of our link prediction
pre-training process, including the specific loss functions
and other details.

4.1 Our attribute encoding transformer (AET)

The overview of our proposed framework is depicted in Fig. 1.
Here, we sequentially describe the functionalities of the four
components mentioned above. Since unattributed dynamic
graphs typically contain only positive samples, the negative
sample generator is essential both during pre-training and fine-
tuning to artificially construct negative samples needed for
training. We unify edge anomalies in dynamic graphs with
Link Prediction, where Link Prediction serves as a pre-training
task and anomaly detection as a fine-tuning task. At timestamp
t , we randomly sample a set number of nodes as candidates for
anomalous samples. We then verify that these node pairs do
not belong to the existing set of normal edges across all train-
ing timestamps, as done in previous methods like TADDY.
Once positive and negative samples are obtained, the sub-
structure sampling module operates by centering on an edge
to sample a substructure, which serves as a surrogate for edge
attributes. This substructure, along with historical interaction
data extracted from the original graph, is then processed using
the spatial historical encoder to generate an edge encoding
that can represent edge attributes. Subsequently, these edge

encodings are treated as individual tokens input into the trans-
former Module, where they interact with one another through
the module’s multi-head attention mechanism, enhancing the
encoding of the dynamic attributes of the graph. Finally, the
output edge encoding is utilized for the link prediction task
during pre-training or the Anomaly Detection task during
fine-tuning.

4.2 Substructure sampling

Before conducting substructure sampling on the samples, it is
essential to have both positive and negative samples, neces-
sitating the use of a negative sample generator to produce the
negative samples.

For the link prediction pre-training task, we need to deter-
mine whether two nodes are connected; hence, an edge formed
by connecting two randomly unconnected nodes serves as a
negative sample for link prediction. However, during the fine-
tuning phase for the Anomaly Detection task, the challenge
arises because our training dataset lacks real negative samples.
How can we generate pseudo-negative samples from positive
samples? Inspired by Taddy [13], we use edges that do not
exist in the original dynamic graph as negative samples. Spe-
cifically, just like in the negative sample generator for link
prediction pre-training, we select two random nodes and verify
that these nodes are not connected at any timestamp. An edge
connecting these two random nodes, therefore, represents an
edge that does not exist in the original dynamic graph, thus
providing a negative sample.

Formally, we define graph diffusion S ∈ ℝ
n×n by

(1)S =

∞
∑

k=0

ΘkT
k ∈ ℝ

n×n

Link Predic�on
Pretrain

Anomaly Detec�on
Fine-Tuning

Una�ributed
Dynamic Graphs

Nega�ve Sample
Generator

Nega�ve Sample
Generator

Substructure
Sam

pling

t t+1

…

Spa�al Encoder

Historical Encoder

Input Edge
Encoding

…

Spa�al Encoder

Historical Encoder

Spa�al Historical Encoder

Tansform
erm

odule

Output Edge
Encoding

…

Link
Predic�on

Anom
aly

Detec�on

Attribute Encoding Transformer (AET)

A�ribute Encoding Transformer (AET)

Weight Ini�aliza�on

Fig. 1 Pipeline of attribute encoding transformer on unattributed dynamic graphs for anomaly detection

International Journal of Machine Learning and Cybernetics

where T ∈ ℝ
n×n is the generalized transition matrix and Θ

is the weighting coefficient which determines the ratio of
global–local information. The adjacency matrix A ∈ ℝ

n×n
and the diagonal degree matrix D ∈ ℝ

n×n are used by
generalized graph diffusion to define the Personalized
PageRank(PPR) instantiations. PPR chooses T = AD−1 and
�k = �(1 − �)k where � ∈ (0, 1) is the teleport probability.
The solutions to PPR is formulated as:

From a global perspective, a row si of the diffusion matrix
S represents the connectivity between the i-th node and the
other nodes. After that, to gain the representation of the tar-
get edge ei,j = (v1, v2) , we can choose a fix number of most
important nodes, and compute the connectivity of ei,j by add-
ing the connectivity vectors.

We then turn our attention to dynamic graphs, initially cap-
turing their temporal evolution through multiple timestamps.
For a given target edge et

i,j
= (vt

1
, vt

2
) at timestamp t , the

sequence of graphs is defined as �t
�
=
{

G
t−�+1, ⋅ ⋅ ⋅,Gt

}

 ,
where � represents the size of the time window. A sliding
window mechanism is subsequently employed, enabling the
capture of dynamic evolving between timestamps (t − � + 1)
and t . For each substructure within the time frame, we com-
pute the diffusion matrix and obtain a representation vector
for the target edge. By sorting the elements within this con-
nection vector, we can select k nodes. Integrating the source

(2)SPPR = �
(

�
�
− (1 − �)D−1∕2

��
−�∕�

)−1

(3)sei,j = sv1 + sv2

and destination nodes, the substructure node set of the i-th
timestamp can be sampled as Si(et

i,j
).

4.3 Spatial historical encoder

Our spatial historical encoder architecture is illustrated in
Fig. 2a. It consists of four key components: the global spatial
encoder, local spatial encoder, relative temporal encoder,
and appear frequency encoder. These elements are designed
to synergistically process and integrate different types of
spatial and temporal data, thereby enhancing the overall
encoding performance for our tasks. To capture the spatial
information of the target edge, including the neighboring
conditions and the degree of connectivity, we employ a spa-
tial encoder to encode the obtained substructure, thereby
extracting the spatial attributes of the target edge. To acquire
the historical interaction information of the target edge,
which includes the sequence of timestamps when the tar-
get edge appears and the frequency of its occurrence, we
utilize a historical encoder. This encoder processes both
the ubstructure and the occurrence data gathered from the
original dataset to encode the historical interaction attrib-
utes of the target edge. Finally, we integrate the spatial and
historical interaction attributes of the target edge to form an
intermediate encoding for the target edge.

Specifically, for the substructure obtained from substructure
sampling, the target edge’s substructure at timestamp t is
S(et

i,j
) . In the spatial encoder, it is essential to capture both

global and local spatial information. Inspired by Graphformers
[26], the graph diffusion in substructure sampling provides a

Fig. 2 Key structures within our AET

 International Journal of Machine Learning and Cybernetics

global view of each node’s structural role. We rank nodes
based on their diffusion values and use these rankings as a data
source, embedding the target edge’s spatial information within
these rankings. The formula for this process is:

where V is the node set based on the diffusion values,
g(⋅),R(⋅) are the linear mapping function and ranking
function.

Additionally, for the target edge, it is crucial to capture local
spatial information. We calculate the shortest distance from the
nodes in the substructure to the target edge for its encoding.
If a node in the substructure is a source or target node of the
target edge, the distance is set to zero. A single-layer learn-
able linear function is also employed to ensure dimensional
alignment with the component that captures global spatial
information:

where dist(⋅),min(⋅) are the relative distance computing
function and minimum value function.

Then, by integrating both global and local spatial informa-
tion, we derive the spatial attributes of the target edge. In the
sistorical encoder, it is crucial to capture the relative order
of timestamps for the target edge. However, merely encoding
the relative sequence of timestamps is insufficient for captur-
ing the edge’s historical interactions effectively. Many edges
reappear at different timestamps, and the practice of removing
duplicate edges during the preprocessing stage significantly
reduces the richness of information. At this stage, we can tally
the frequency of occurrences of the target edge and encode
this information simultaneously to prevent loss of data due to
the removal of duplicates. For the relative order of the target
edge’s timestamps, we encode using the current timestamp
in relation to the timestamps of the target edge. The result-
ing data is then dimensionally aligned using a single-layer
learnable linear function. The frequency of occurrences of
the target edge also requires dimensional alignment through a
single-layer learnable linear function, which, when combined
with the previous outputs, yields the target edge’s historical
interaction attributes, denoted as �(V) . After that, we merge
the target edge’s spatial attributes and historical interaction
attributes to form an intermediate encoding for the target edge,
represented as:

where ‖⋅‖ is the relative time computing function.
Finally, given a target edge et

i,j
 , we compute the encoding

of the substructure node set for the given edge by summing
the three encoding terms together:

(4)Xglb(V) = g(R(V ⊂ S(et
i,j
)))

(5)Xloc(V) = g(
⋃t

i=t−�+1
min(dist(vi, v1), dist(vi, v2)))

(6)Xtemp(V) = g(�(V) +
t
⋃

i=t−�+1

(‖t − i‖))

4.4 Transformer module

Our tansformer module is illustrated in Fig. 2b. To further
enhance the quality of encoding, inspired by Graphformer,
different tokens within the transformer can interact and
learn from each other, thereby enriching the content of the
tokens. In our approach, we input the edge encodings into
the transformer in chronological order based on their times-
tamps. At this stage, each edge encoding not only contains
spatial information but also historical interaction data. The
transformer architecture is thus able to capture both spa-
tial and temporal features simultaneously, facilitating the
exchange of information between different edge encodings.
Specifically:

where W(l)

Q
,K

(l)

K
,V

(l)

V
∈ ℝ

�(k+2)×d , are learnable parameter
matrices of the l-th attention layer. Then a single attention
layer can be written as:

where H(l) is the output embedding of the l-th layer, d is the
dimension for node embedding, and Q(l),K(l),V(l) ∈ ℝ

�(k+2)×d
are the query matrix, key matrix and value matrix. The out-
put of the attention layer H(l) is represented as the node
embedding matrix from the transformer module, where each
row corresponds to the embedding vector of a respective
node, H(0) is defined as the encoding matrix of the target
edge X(et

i,j
) , which is the output of spatial historical encoder.

4.5 Link prediction pre‑training

As previously mentioned, due to the large number of param-
eters in the transformer, an appropriate pre-training strategy
is essential to fully harness its capabilities. The link predic-
tion pre-training task, which assesses whether two nodes
are connected, is a common measure of the performance of
GNNs. Given a pair of nodes, q and k, the model is trained
to predict their connectivity based on the embedding of the
edge. When fine-tuning on the target dataset, we use all
other datasets as the training data for the link prediction
pre-training. Samples generated by the negative sample gen-
erator serve as negative samples eneg , while edges that are
connected in the original graph are used as positive samples
epos . The loss function used in this context is denoted as:

(7)X(et
i,j
) = Xglb(V) + Xloc(V) + Xtemp(V)

(8)Q(l) = H(l−1)W
(l)

Q
,K(l) = H(l−1)W

(l)

K
,V(l) = H(l−1)W

(l)

V

(9)H(l) = softmax

�

Q(l)K(l)⊤

√

d

�

V(l) = attention(Hl−1)

International Journal of Machine Learning and Cybernetics

After completing the link prediction pre-training, we save
its weights and use these to initialize our Attribute Encod-
ing Transformer (AET). We then reduce the learning rate
to proceed with the anomaly detection tasks. This method
not only leverages the powerful learning capabilities of the
Transformer but also ensures that our model is finely tuned
for the specific nuances of anomaly detection in dynamic
graphs.

5 Experimental studies

This section provides a comprehensive overview of vari-
ous experiments conducted on multiple real-world bench-
mark datasets.

5.1 Datasets

We evaluate our work on four real-world benchmark data-
sets of dynamics graphs. The details of the datasets are
shown in Table 2. The UCI Messages dataset [16] is col-
lected from an online community platform of students at
the University of California, Irvine. Each node represents
a user in the platform, and each edge is for a message
between two users. The Email-DNC dataset [19] is net-
work of emails in the 2016 Democratic National Com-
mittee email leak. Each node corresponds to a person.
And each edge denotes an email communication between
two persons. The Digg dataset [5] is a response notwork
of digg, a social news site. Each node represents a web-
site user, and each edge indicates that one user replies to
another. The Bitcoin-Alpha [12] is a network connection
dataset collected from a Bitcoin transaction platform www.
btc-alpha.com. Nodes are users from the platform, and
there is an edge appear when one user rates another user.

(10)L = −

mt

∑

i=1

log(1 − f (epos,i) + log(f (eneg,i))
5.2 Baselines

We compare our work with seven state-of-the-art baselines,
the details of which were compared as follows:

Node2vec [9] use the Skip-gram technology to learn node
embedding. It combines breadth-first traversal and depth-
first traversal when generating random walks.

Spectral Clustering [23] treats all data nodes as vertices
in a space, forming a graph wherein the objective is to parti-
tion this graph. The process involves optimizing the cut of
the graph such that the sum of the edge weights between
different subgraphs is minimized, while the sum of the edge
weights within each subgraph is maximized. This method
aims to achieve effective clustering by ensuring that the sub-
graphs are internally cohesive yet distinctly separated from
each other.

DeepWalk [17] is a random walk-based method for graph
embedding. It generates the random walks when given
length starting from nodes and uses Skip-gram to learn the
node embeddings.

NetWalk [28] first builds node embeddings based on
random walks. Specifically, it utilizes a random alk-based
approach to learn a unified embedding for each node using
auto-encoder technology. The embedding representation will
be update over time via an attention-based GRU structure,
and then detects anomaly using the clustering on the node
embeddings.

AddGraph [33] is an end-to-end dynamic graph anomaly
detection model. It leverages GCN and GRU-attention to
capturte strucral and temporal information respectively.

StrGNN [3] is an end-to-end dynamic graph anomaly
detection approach. It leverges h-hop enclosing subgraphs
as the network’s input, and then used GCN and GRU to
model the structural and temporal information for each edge.

TADDY [13] constructs an informative node encoding
method, and uses a transformer model to successfully cap-
tures the coupled spatial-temporal information in dynamic
graphs.

5.3 Experimental design

Evaluation Protocol AUC (Area Under Curve) is a metric for
evaluating the performance of binary classification models.
It takes account of the evaluation ability of both positive
and negative classes, and is widely used in anomaly detec-
tion models.

Our proposed method is implemented using PyTorch
1.13.0 and CUDA 12.0. All experiments are conducted on
a Linux server with 8*NVIDIA A40(40GB memory each)
GPUs, with Intel Xeon Gold 6248R @ 3.00GHz * 2 and 1
T of RAM. The number of transformer layers is 2 with the
embedding dim of 448 for all the datasets, and the number of
attention heads is 6. Setting of Link Prediction Pre-training

Table 2 The information of datasets

Dataset Nodes Edges Avg. degree

UCI 1899 13,838 14.57
Email-DNC 1866 39,264 42.08
Digg 30,360 85,155 5.61
Bitcoin-Alpha 3777 24,173 12.80

 International Journal of Machine Learning and Cybernetics

The framework is pre-trained by Adam optimizer with a
learning rate of 0.0005 with weight decay of 5e−5. In Pre-
training stage, we train all datasets with 400 epochs for Link
Prediction task then save the model’s weight for initializa-
tion in anomaly detection task. Setting of Anomaly Detection
fine-tuning The framework is trained by Adam optimizer
with a learning rate of 0.0001 with weight decay of 2e−5.
We train all datasets with 80 epochs. As baseline used, each
dataset is divided into two subsets: the first 50% of times-
tamps is denoted as training set, while the latter 50% as test
set. we consider three different anomaly proportions: 1%,
5%, and 10%, when injecting the anomalous data into the
test set in the preprocessing stage.

5.4 Results analysis

In this section, we first report and analyze the performance
achieved on various attribute-less dynamic graph datasets,
with all results summarized in Table 3.

• Our model consistently outperforms all baseline mod-
els across four different real-world datasets. Notably, on
the UCI dataset, our model significantly surpasses other
methods, achieving an average performance improve-
ment of approximately 3% across three different set-
tings. Particularly when the anomaly proportion is 1%,
our model exhibits nearly a 6% increase in performance.

• Compared to other baselines, our model is less sensitive
to variations in anomaly proportions. As indicated in the
table, the performance of other models is greatly influ-
enced by the anomaly ratio, whereas our model maintains
robust performance regardless of the anomaly propor-
tion. This robustness is likely due to our model’s superior
capability in extracting high-quality edge embeddings,
which significantly broadens its applicability.

• When compared with graph embedding methods such as
NetWalk, AddGraph, and StrGNN, our results consist-
ently hold an advantage. We attribute this to our effec-
tive utilization of the transformer structure’s capability
for long-distance modeling, allowing for the exchange
of information across different timestamps. Moreover,
compared to methods like Taddy that also use the trans-
former architecture, our approach remains superior. We
speculate this is partly due to our effective exploitation
of the transformer’s potential through an appropriate
pre-training strategy and partly because our historical
encoder adeptly captures temporal and historical inter-
action information. This enriches the node encoding,
thereby enhancing anomaly detection performance.

Secondly, we evaluated the impact of varying training
data proportions on the performance of AET. The training
ratios tested ranged from 10% to 60% , with other parameters
set to default values. We utilized the Bitcoin-Alpha dataset,
which contains 10% anomalies, as depicted in Fig. 3. As

Table 3 Performance comparison of various methods

Method UCI Digg

1% 5% 10% 1% 5% 10%

NODE2VEC 0.7371 0.7433 0.6960 0.7364 0.7081 0.6508
SPECTRAL 0.6324 0.6104 0.5794 0.5949 0.5823 0.5591
DEEPWALK 0.7514 0.7391 0.6979 0.7080 0.6881 0.6396
NETWALK 0.7758 0.7647 0.7226 0.7563 0.7176 0.6837
ADDGRAPH 0.8083 0.8090 0.7688 0.8341 0.8470 0.8369
STRGNN 0.8179 0.8252 0.7959 0.8162 0.8254 0.8272
TADDY 0.8912 0.8398 0.8370 0.8617 0.8545 0.8440
AET (ours) 0.8966 0.8679 0.8893 0.8755 0.8640 0.8725

Method Email-DNC Bitcoin-Alpha

1% 5% 10% 1% 5% 10%

NODE2VEC 0.7391 0.7284 0.7103 0.6910 0.6802 0.6785
SPECTRAL 0.8096 0.7857 0.7759 0.7401 0.7275 0.7167
DEEPWALK 0.7481 0.7303 0.7197 0.6985 0.6874 0.6793
NETWALK 0.8105 0.8371 0.8305 0.8385 0.8357 0.8350
ADDGRAPH 0.8393 0.8627 0.8773 0.8665 0.8403 0.8498
STRGNN 0.8775 0.9103 0.9080 0.8574 0.8667 0.8627
TADDY 0.9348 0.9257 0.9210 0.9451 0.9341 0.9423
AET (ours) 0.9537 0.9582 0.9498 0.9485 0.9472 0.9624

International Journal of Machine Learning and Cybernetics

the training ratio increases, the AUC value steadily rises,
indicating that more training data can provide the model
with more effective information. Even in cases of insuffi-
cient training data, our model is capable of learning infor-
mation-rich representations. These results demonstrate that
our framework can effectively detect anomalies in dynamic
graphs, regardless of the sufficiency of training data.

5.5 Ablation study

To analyze the impact of spatial historical encoder and link
prediction pre-training methods on the overall performance,
we carry out an ablation study of the proposed AET frame-
work. Specifically, we evaluate several variations of the node
encoding: without the pre-training model (w/o pre-training.),
and without the Spatial Historical Encoder (w/o Spatial His-
torical Encoder.). In each case, the corresponding compo-
nent is removed, while the remaining method is retained.

As illustrated in Fig. 4, the results clearly demonstrate
that, on one hand, after pre-training, our model becomes
less sensitive to variations in anomaly ratios. This improve-
ment is associated with the enriched graph structure expo-
sure during the pre-training phase, which broadens the initial
knowledge base of the model. On the other hand, there is a
significant difference in performance between models with
and without the spatial historical encoder. This disparity can
be attributed to the challenges of obtaining attributes for
edges in attribute-less graphs. Without appropriate encod-
ing strategies and substructure sampling, models struggle
to acquire useful attributes, hindering their ability to learn
effective encodings.

6 Conclusion

In this paper, we introduce a novel encoding paradigm for
edges in attribute-less graphs, termed the Attribute Encod-
ing Transformer, which comprehensively incorporates both
spatial and historical interaction information of target edges.
Additionally, we propose a pre-training methodology, link
prediction pretrain, designed to optimize the performance of
the transformer architecture. Experimental evaluations on
multiple real-world datasets demonstrate that our Attribute
Encoding Transformer framework efficiently detects anoma-
lies in dynamic graphs and outperforms existing methods.
Overall, our AET successfully addresses the challenges of
encoding attribute-less graphs, thereby enhancing support
for downstream tasks such as anomaly detection.

Fig. 3 AUC results on Bitcoin-Alpha with different training ratios

Fig. 4 Ablation study

 International Journal of Machine Learning and Cybernetics

Author Contributions SW had the idea for the article. All authors
contributed to the study conception and design. Material preparation,
literature search, data collection and analysis were performed by SW
and HH. The first draft of the manuscript was written by SW and all
authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

Data availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

 1. Aggarwal CC, Zhao Y, Philip SY (2011) Outlier detection in
graph streams. In: 2011 IEEE 27th international conference on
data engineering. IEEE, pp 399–409

 2. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly
detection and description: a survey. Data Min Knowl Disc
29:626–688

 3. Cai L, Chen Z, Luo C, Gui J, Ni J, Li D, Chen H (2021) Struc-
tural temporal graph neural networks for anomaly detection
in dynamic graphs. In: Proceedings of the 30th ACM interna-
tional conference on information & knowledge management, pp
3747–3756

 4. Chen J, Pareja A, Domeniconi G, Ma T, Suzumura T, Kaler T,
Schardl TB, Leiserson CE (2022) Evolving graph convolutional
networks for dynamic graphs Dec 27 , uS Patent 11,537,852

 5. De Choudhury M, Sundaram H, John A, Seligmann DD (2009)
Social synchrony: predicting mimicry of user actions in online
social media. In: 2009 International conference on computa-
tional science and engineering, vol 4. IEEE, pp 151–158

 6. Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-
training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv: 1810. 04805

 7. Dou Y, Liu Z, Sun L, Deng Y, Peng H, Yu PS (2020) Enhancing
graph neural network-based fraud detectors against camouflaged
fraudsters. In: Proceedings of the 29th ACM international con-
ference on information & knowledge management, pp 315–324

 8. Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D (2019) Graph
neural networks for social recommendation. In: The world wide
web conference, pp 417–426

 9. Grover A, Leskovec J (2016) node2vec: Scalable feature learn-
ing for networks. In: Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, pp 855–864

 10. Hao H, Wang S, Ben H, Hao Y, Wang Y, Wang W (2024) Hier-
archical space-time attention for micro-expression recognition.
arXiv preprint arXiv: 2405. 03202

 11. Kanakia A, Shen Z, Eide D, Wang K (2019) A scalable hybrid
research paper recommender system for Microsoft academic.
In: The world wide web conference, pp 2893–2899

 12. Kumar S, Spezzano F, Subrahmanian V, Faloutsos C (2016)
Edge weight prediction in weighted signed networks. In: 2016
IEEE 16th international conference on data mining (ICDM).
IEEE, pp 221–230

 13. Liu Y, Pan S, Wang YG, Xiong F, Wang L, Chen Q, Lee VC
(2021) Anomaly detection in dynamic graphs via transformer.
IEEE Trans Knowl Data Eng 35(12):12081–12094

 14. Ma X, Wu J, Xue S, Yang J, Zhou C, Sheng QZ, Xiong H,
Akoglu L (2021) A comprehensive survey on graph anomaly
detection with deep learning. IEEE Trans Knowl Data Eng
35(12):12012–12038

 15. Min E, Rong Y, Xu T, Bian Y, Luo D, Lin K, Huang J, Anania-
dou S, Zhao P (2022) Neighbour interaction based click-through
rate prediction via graph-masked transformer. In: Proceedings
of the 45th international ACM SIGIR conference on research
and development in information retrieval, pp 353–362

 16. Opsahl T, Panzarasa P (2009) Clustering in weighted networks.
Soc Netw 31(2):155–163

 17. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learn-
ing of social representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp 701–710

 18. Ranshous S, Harenberg S, Sharma K, Samatova NF (2016) A
scalable approach for outlier detection in edge streams using
sketch-based approximations. In: Proceedings of the 2016
SIAM international conference on data mining. SIAM, pp
189–197

 19. Rossi R, Ahmed N (2015) The network data repository with
interactive graph analytics and visualization. In: Proceedings
of the AAAI conference on artificial intelligence, vol 29

 20. Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bron-
stein M (2020) Temporal graph networks for deep learning on
dynamic graphs. arXiv preprint arXiv: 2006. 10637

 21. Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep
neural representation learning on dynamic graphs via self-
attention networks. In: Proceedings of the 13th international
conference on web search and data mining, pp 519–527

 22. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.
Adv Neural Inf Process Syst 30

 23. von Luxburg U A tutorial on spectral clustering. statistics and
computing. Data Structures and Algorithms (cs. DS); Machine
Learning, pp 395–416

 24. Wu Y, Fang Y, Liao L (2024) On the feasibility of simple trans-
former for dynamic graph modeling. arXiv preprint arXiv: 2401.
14009

 25. Yang C, Zhou L, Wen H, Zhou Z, Wu Y (2020) H-vgrae: a
hierarchical stochastic spatial-temporal embedding method for
robust anomaly detection in dynamic networks. arXiv preprint
arXiv: 2007. 06903

 26. Yang J, Liu Z, Xiao S, Li C, Lian D, Agrawal S, Singh A, Sun
G, Xie X (2021) Graphformers: Gnn-nested transformers for
representation learning on textual graph. Adv Neural Inf Pro-
cess Syst 34:28798–28810

 27. Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu TY
(2021) Do transformers really perform badly for graph repre-
sentation? Adv Neural Inf Process Syst 34:28877–28888

 28. Yu W, Cheng W, Aggarwal CC, Zhang K, Chen H, Wang W
(2018) Netwalk: a flexible deep embedding approach for anom-
aly detection in dynamic networks. In: Proceedings of the 24th
ACM SIGKDD international conference on knowledge discov-
ery & data mining, pp 2672–2681

 29. Yu L, Sun L, Du B, Lv W (2023) Towards better dynamic graph
learning: new architecture and unified library. Adv Neural Inf
Process Syst 36:67686–67700

 30. Yu X, Zhou C, Fang Y, Zhang X (2023) Multigprompt for
multi-task pre-training and prompting on graphs. arXiv preprint
arXiv: 2312. 03731

 31. Yu X, Fang Y, Liu Z, Zhang X (2024) Hgprompt: bridging
homogeneous and heterogeneous graphs for few-shot prompt
learning. In: Proceedings of the AAAI conference on artificial
intelligence, vol 38, pp 16578–16586

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2405.03202
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/2401.14009
http://arxiv.org/abs/2401.14009
http://arxiv.org/abs/2007.06903
http://arxiv.org/abs/2312.03731

International Journal of Machine Learning and Cybernetics

 32. Zhang J, Zhang H, Xia C, Sun L (2020) Graph-bert: only atten-
tion is needed for learning graph representations. arXiv preprint
arXiv: 2001. 05140

 33. Zheng L, Li Z, Li J, Li Z, Gao J (2019) Addgraph: anomaly
detection in dynamic graph using attention-based temporal gcn.
In: IJCAI. 3, 7

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/2001.05140

	Attribute encoding transformer on unattributed dynamic graphs for anomaly detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Encoding for nodes or edges
	2.2 Transformers in graph

	3 Question definition
	4 Method
	4.1 Our attribute encoding transformer (AET)
	4.2 Substructure sampling
	4.3 Spatial historical encoder
	4.4 Transformer module
	4.5 Link prediction pre-training

	5 Experimental studies
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental design
	5.4 Results analysis
	5.5 Ablation study

	6 Conclusion
	References

